Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma.
نویسندگان
چکیده
PURPOSE Gene targeted lumican-null mutants (lum(tm1sc)/lum(tm1sc)) have cloudy corneas with abnormally thick collagen fibrils. The purpose of the present study was to analyze the loss of transparency quantitatively and to define the associated corneal collagen fibril and stromal defects. METHODS Backscattering of light, a function of corneal haze and opacification, was determined regionally using in vivo confocal microscopy in lumican-deficient and wild-type control mice. Fibril organization and structure were analyzed using transmission electron microscopy. Biochemical approaches were used to quantify glycosaminoglycan contents. Lumican distribution in the cornea was elucidated immunohistochemically. RESULTS; Compared with control stromas, lumican-deficient stromas displayed a threefold increase in backscattered light with maximal increase confined to the posterior stroma. Confocal microscopy through-focusing (CMTF) measurement profiles also indicated a 40% reduction in stromal thickness in the lumican-null mice. Transmission electron microscopy indicated significant collagen fibril abnormalities in the posterior stroma, with the anterior stroma remaining relatively unremarkable. The lumican-deficient posterior stroma displayed a pronounced increase in fibril diameter, large fibril aggregates, altered fibril packing, and poor lamellar organization. Immunostaining of wild-type corneas demonstrated high concentrations of lumican in the posterior stroma. Biochemical assessment of keratan sulfate (KS) content of whole eyes revealed a 25% reduction in KS content in the lumican-deficient mice. CONCLUSIONS The structural defects and maximum backscattering of light clearly localized to the posterior stroma of lumican-deficient mice. In normal mice, an enrichment of lumican was observed in the posterior stroma compared with that in the anterior stroma. Taken together, these observations indicate a key role for lumican in the posterior stroma in maintaining normal fibril architecture, most likely by regulating fibril assembly and maintaining optimal KS content required for transparency.
منابع مشابه
Neonatal development of the corneal stroma in wild-type and lumican-null mice.
PURPOSE Between days 8 and 14 of neonatal development, the corneal stroma of the mouse undergoes critical changes in tissue thickness, cell density, and light scattering. The authors investigate the stromal matrix structure in wild-type and lumican-deficient corneas in this developmental phase. METHODS Wild-type (n = 44) and lumican-deficient (n = 42) mouse corneas at neonatal days 8, 10, 12,...
متن کاملAn x-ray diffraction study of corneal structure in mimecan-deficient mice.
PURPOSE Keratan sulfate proteoglycans (KSPGs) in the corneal stroma are believed to influence collagen fibrillar arrangement. This study was performed to investigate the fibrillar architecture of the corneal stroma in mice homozygous for a null mutation in the corneal KSPG, mimecan. METHODS Wild-type (n = 9) and mimecan-deficient (n = 10) mouse corneas were investigated by low-angle synchrotr...
متن کاملLumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican
Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defe...
متن کاملAltered collagen fibril formation in the sclera of lumican-deficient mice.
PURPOSE To better understand the role of lumican (corneal keratan sulfate proteoglycan) in the scleral extracellular matrix, collagen fibril size, shape, and organization were evaluated in the sclera of wild-type mice and in mice homozygous or heterozygous for a null mutation in the lumican gene. METHODS. Anterior and posterior sclera from 6-month-old wild-type (lum+/lum+) and lumican-deficient...
متن کاملCollagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model.
Collagen V is a regulatory fibril-forming collagen that forms heterotypic fibrils with collagen I. Deletion of collagen V in the mouse is associated with a lack of fibril assembly in the embryonic mesenchyme, with a resultant lethal phenotype. The current work elucidates the regulatory roles of collagen V during development and growth of tissues. A conditional mouse model with a mutation in Col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 41 11 شماره
صفحات -
تاریخ انتشار 2000